Feature Spaces-based Transfer Learning
نویسندگان
چکیده
Transfer learning provides an approach to solve target tasks more quickly and effectively by using previouslyacquired knowledge learned from source tasks. Most of transfer learning approaches extract knowledge of source domain in the given feature space. The issue is that single perspective can‟t mine the relationship of source domain and target domain fully. To deal with this issue, this paper develops a method using Stacked Denoising Autoencoder (SDA) to extract new feature spaces for source domain and target domain, and define two fuzzy sets to analyse the variation of prediction accuracy of target task in new feature spaces.
منابع مشابه
Proactive Transfer Learning for Heterogeneous Feature and Label Spaces
We propose a framework for learning new target tasks by leveraging existing heterogeneous knowledge sources. Unlike the traditional transfer learning, we do not require explicit relations between source and target tasks, and instead let the learner actively mine transferable knowledge from a source dataset. To this end, we develop (1) a transfer learning method for source datasets with heteroge...
متن کاملMixed-Transfer: Transfer Learning over Mixed Graphs
Heterogeneous transfer learning has been proposed as a new learning strategy to improve performance in a target domain by leveraging data from other heterogeneous source domains where feature spaces can be different across different domains. In order to connect two different spaces, one common technique is to bridge feature spaces by using some co-occurrence data. For example, annotated images ...
متن کاملHeterogeneous Transfer Learning for Image Clustering via the SocialWeb
In this paper, we present a new learning scenario, heterogeneous transfer learning, which improves learning performance when the data can be in different feature spaces and where no correspondence between data instances in these spaces is provided. In the past, we have classified Chinese text documents using English training data under the heterogeneous transfer learning framework. In this pape...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملLearning Invariant Feature Spaces to Transfer Skills with Reinforcement Learning
People can learn a wide range of tasks from their own experience, but can also learn from observing other creatures. This can accelerate acquisition of new skills even when the observed agent differs substantially from the learning agent in terms of morphology. In this paper, we examine how reinforcement learning algorithms can transfer knowledge between morphologically different agents (e.g., ...
متن کامل